PRODUET o -
PREVIEW

"AMIGA

PERSONAL COMPUTER

& &

Its speed and colorful graphics come
from a 68000 and sophisticated custom chips

Editor's note: The following is a
BYTE product preview. It is

not a review. We provide an
advanced look at this new product
because we feel it is significant.

A complete review will follow

in a subsequent issue.

THERE ARE TWO ways to
get work done inside a
computer: do it in
software or do it in
hardware. The first way
gives you unlimited
flexibility; the other,
speed. The Apple
Macintosh does

almost everything

in software—and,
(continued)

PHOTOGRAPHED BY MICHAEL CARR

84

IN BRIEF

Name
Amiga Personal Computer

Manufacturer
Commodore International
1200 Wilson Dr.

West Chester, PA 19380
(215) 431-9100

Price
$1295

Microprocessor
Motorola 68000, a 32-/16-bit microprocessor (32-bit internal data path and
registers, 16-bit external data bus) running at 715909 MHz

Main Memory
256K bytes dynamic RAM, user-expandable to 512K bytes;
machine's design allows for maximum of 85 megabytes

ROM
192K bytes of ROM containing multitasking, graphics, sound,
and animation support routines

Graphics

Five modes (320 by 200 pixels, 32 colors; 320 by 400, 32 colors; 640
by 200, 16 colors; 640 by 400, 16 colors; sample-and-hold mode);
independent horizontal and vertical scrolling of dual playfields;

eight hardware sprites; colors chosen from a palette of 4096 colors

Sound
Four independent audio channels; sound produced without supervision
of 68000

Floppy Disk

Built-in 3%2-inch double-sided disk drive. Disks hold 880K bytes

in 160 tracks, each with eleven 512-byte sectors; drive hardware can read
an entire track at a time

Keyboard

Detached 89-key keyboard with calculator pad, function and cursor keys;
keyboard returns row/column keycodes for each key, sends both key-up and
key-down signals; can sense up to two keys simultaneously;

8-key type-ahead buffer

Expansion Ports

Disk port onto which three additional disk drives can connect via daisy chain;
serial port with maximum transfer rate of 500,000 bps;

programmable parallel port normally configured as Centronics-compatible;
expansion bus includes full set of signals for optional peripherals and
memory expansion

User Interface (Intuition)
Supports multitasking through the use of virtual terminals; allows simultaneous
display of different resolutions and graphics modes

Bundled Software
AmigaDOS

Voice Synthesis Library
ABasiC

Tutorial (Mindscape)
Kaleidoscope (Electronic Arts)

Audio and Video Ports
Two stereo audio jacks; RGB analog, RGB digital, and NTSC composite
output

Miscellaneous
Three custom chips to control graphics, audio, and peripheral 1/0; chips
connected by 19-bit register-address bus; two-button mechanical mouse

Optional Peripherals
3Y2-inch 880K-byte disk drive; RGB analog color monitor; 256K-byte memory
expansion module; 300/1200-bps modem; MIDI interface; frame grabber

BYTE * AUGUST 1985

THE AMIGA

not coincidentally, people want Apple
to increase the Mac's speed, add
color, and lower its price.

Commodore has just introduced a
computer that promises these im-
provements, and it does so by doing
many things in hardware. At $1295,
the Amiga Personal Computer (see
photo 1) promises lightning-fast
desktop-metaphor graphics in color
and twice as much memory and disk
storage as the Macintosh for several
hundred dollars less than the Macin-
tosh (about $900, but you'll have to
buy a monitor or television set for the
Amiga). It also has an expansion bus
and a whopping 192K bytes of so-
phisticated 68000 code in ROM (read-
only memory) that extends the multi-
tasking, graphics, sound, and anima-
tion capabilities of the Amiga
hardware.

SYSTEM DESCRIPTION

The Amiga is summarized in the In
Brief section on this page. It has no
slots for expansion cards, but Com-
modore later intends to offer a box
that connects to the expansion con-
nector to add several expansion slots.
(It is theoretically possible to add 8
megabytes of memory in this way.,)
The Amiga’'s disk operating system
will also be able to look at the expan-
sion box, determine what peripherals
are present, and configure itself ac-
cordingly, regardless of the box's
contents.

SYSTEM ARCHITECTURE

The Amiga has a unique architecture
that is only partially described by a
functional block diagram (see figure
1). Three custom chips relieve the
68000 processor of many tasks that
tie it down in other computers. How-
ever, the diagram does not show the
finely tuned sharing of the system’s
data and address buses, the 25 DMA

Gregg Williams is a senior technical editor at
BYTE, and Jon Edwards is a technical editor.
They can be reached at BYTE, POB 372,
Hancock, NH 03449, Phillip Robinson is
a West Coast senior technical editor at BYTE.
He can be reached at BYTE Magazine, 425
Battery St., San Francisco, CA 94111.

THE AMIGA

(direct memory access) channels that
do many data-movement-intensive
operations without tying up the
68000, or the multiprocessing
routines in ROM that allow the Amiga
to orchestrate a variety of tasks. In the
following sections we will look at the
key elements of the Amiga’s system
architecture.

THE CUSTOM CHIPS

The three custom chips that control
DMA, graphics, sound, and I/O (input/
output) (see photo 2) were designed
by Jay Miner, who is best known for
his design of the custom chips in the
Atari 800 series computers. Although
we will discuss them in depth by func-
tion, here is a simple breakdown:

® The “animation custom chip” actual-
ly contains several miscellaneous
functions. It is the “traffic cop” that
controls DMA. It contains the Copper,
a coprocessor that can directly con-
trol the other chips in relation to the
video beam, and the Blitter, a device
that quickly draws lines, fills areas with
a given color, and manipulates rec-

® The graphics custom chip, which
manipulates the visible display, per-
mits up to two independent bit-
mapped images and eight sprites
(which are images that can be moved
easily around the screen, “under” or
“on top of” the bit-mapped images).
® The peripherals/sound custom chip
contains four channels of sound, the
disk controller, an interrupt controller,
and the interfaces for the serial port
and the mouse/joystick port.

INTERRUPTS AND DMA

In the Amiga, all the peripherals are
interrupt-driven—that is, the 68000 is
not tied up constantly polling them to
see if they have new data; instead, the
68000 gets data from the peripheral
only when the peripheral sends an in-
terrupt signal. The peripherals/sound
chip receives interrupt-request signals
from one of 15 sources (e.g., the disk
drive or a sound channel), translates
the request to one of six interrupt
levels supported by the 68000 (the
seventh is reserved for future use),
and sends the interrupt signal to the
68000.

data buses with 25 channels of DMA,
the registers and logic of which reside
in the custom chips. Amiga's DMA is
fast for two reasons: first, the fact that
each device has its own DMA chan-
nel decreases the overhead asso-
ciated with a DMA operation; second,
many DMA operations are interleaved
with 68000 bus access in a way that
makes the DMA transparent to the
68000 (see below for details).
When DMA occurs between mem-
ory- and custom-chip registers, the
use of the 19-bit register-address bus
(see figure 1) makes the transfer twice
as fast. By putting the memory ad-
dress on the address bus and the
register address on the register-
address bus, the DMA circuitry causes
the data value to move directly from
the memory address to the register.
This occurs twice as fast as DMA
would via the 68000, which would
first read the data into itself and then
write the result to the register.

LIBRARIES AND DEVICES
System software (much of it in the
192K bytes of ROM) contains libraries,

tangular blocks of pixels. The 68000 shares the address and (continued)
~ =TV - ——-RGB -~COMPOSITE — -~ V/DEO
TV SYNC

PRINTER PORT

KEYBOARD SERIAL INPUT

UART DISK

[E1E

READ-ONLY
MEMORY
192K BYTES

PARALLEL 170
(2 CHIPS)

MICROPROCESSOR

ANIMATION
CUSTOM CHIP

PERIPHERALS/SOUND
CUSTOM CHIP

GRAPHICS
CUSTOM CHIP

]

MULTIPLEXING
(1 CHIP)

TER _ADDRESS BUS:

ADDRESS

BUS

EXPANSION CONNECTOR

ADDRESS

CHIP MEMORY
256K BYTES STANDARD
256K BYTES ADD-ON

MULTIPLEXING
(3 CHIPS)

7| pata
- MULTIPLEXING

BUS CONTROL
(6 CHIPS)

(4 CHIPS)

Figure 1: A block diagram of the Amiga Personal Computer.

AUGUST 1985 « BYTE ~85

Composite Audio out

video out
Connector
to RF modulator
RGB Serial External Parallel Keyboard
video out interface disk interface interface connector

Tl
it
|

Peripherals/sound 68000
custom chip processor
256K Locations
dynamic RAM Display for ROMs
Animation bus arbitration, 8520
custom chip RAM support, 2
: and bus drivers
Graphics
custom chip

Photo 2: The Amiga motherboard. The internal disk drive, which has been removed, would normally obscure the lower right corner
of the motherboard. The power supply (not shown) is to the left of the motherboard.

86 BYTE « AUGUST 1985

THE AMIGA

a predefined way of organizing useful
routines so that they can be accessed
with maximum flexibility. Libraries
can be resident or transient and can
be used at any memory address
(when they're in RAM [random-access
read/write memory|). Both routines
and data can always be called via a
68000 indirect reference with offset;
this allows you to write code using a
library routine without knowing that
library’s address at compile time. (In
fact, all the code in the system can be
referenced knowing only one fixed
address in the machine, and even that
address is supplied to any machine
that needs it.) A device is an extension
of the library concept that allows soft-
ware to access I/0O devices (both pres-
ent and future) in a uniform way.

THE EXEC ROUTINES

The Exec system is a collection of
reentrant optimized 68000 ROM
routines that perform many functions
vital to the operation of the Amiga.
It includes routines that create and
manipulate lists and queues, schedule
tasks by priority, handle interrupts,
organize device 1/O, control memory
use, and perform other functions.

An important data structure in the
Amiga is the list node. The list node is
a block of data with pointers to the
predecessor and successor nodes in
the list it's in, two 8-bit type and priori-
ty fields, and an associated block of
data. A list is a doubly linked chain of
list nodes and items, started by a
header that points to the first and last
nodes. Exec contains several routines
that let you do things like create a new
list, insert a list item into its proper
place in a queue, and remove a node
from a list.

Another important set of routines
allows you to manipulate tasks. A task
is a unit of work that shares the Amiga
with other tasks in a way that varies
with both the type and priority of the
task. (All the current tasks are held in
a queue and are executed by decreas-
ing priority.) Most programs and oper-
ations reside in the Amiga as tasks.

The task priority field, which con-
tains a number between —128 and
127, determines the order in which

The Exec routines
perform many
functions vital
to the operation
of the Amiga.

tasks will execute. Tasks with identical
numbers share the Amiga in time
slices of preselected duration. A task
with higher priority preempts the cur-
rent task and begins executing.
Because the system saves a task's
states, registers, and stack area, a task
can resume at any time. More impor-
tant, programmers do not have to
make allowances for other tasks that
may be running concurrently—while a
task is active, it "thinks” that it has full
unrestricted access to the 68000.

SHARING THE SYSTEM BUS
Consider that the Amiga can simulta-
neously read the disk, play four chan-
nels of audio, and show 16-color low-
resolution bit-plane graphics and
eight sprites with virtually no slow-
down of the 68000 processor. This is
possible largely because of the way
various subsystems share the bus.

The Amiga's 68000 runs at 7.15909
MHz, while its memory runs at twice
that speed. Most of the instructions
in the 68000 alternate between using
the bus and doing internal calculation.
In this situation, the memory can run
at its top speed and still leave every
other bus cycle free.

The bus sharing takes place in sub-
divisions of the time the electron gun
takes to draw one line of pixels and
do a horizontal retrace, approximately
63 microseconds (us). This divides
into approximately 226 memory-
access cycles of 280 nanoseconds (ns)
each. The Copper, Blitter, and 68000
access memory on the even cycles (0,
2,4,...); theodd cycles (I, 3, 5.. . .)
are reserved for four cycles of mem-
ory-refresh DMA, three cycles of disk
DMA, four cycles of audio DMA
(enough for four channels), 16 cycles
of sprite DMA (enough for eight
sprites), and 80 cycles of bit-plane

DMA (enough to show a 16-color low-
resolution image). The DMA circuits
on each chip "know" when their slots
occur on each horizontal line and
automatically initiate the DMA trans-
fer without involving the 68000.

In many cases, the Copper and the
Blitter aren't active, leaving the 68000
running at full speed. (Actually, some
instructions need the bus at odd
times; if the bus isn't available, the
68000 will insert wait states until the
bus-arbitration PAL [programmed-
array logic chip]| signals that the bus
is free by asserting the 68000's DTACK
line. This happens more frequently as
the custom chips demand more of the
bus's cycles))

Several things modify this bus shar-
ing. If you use more than four bit
planes of low-resolution display, or
more than two high-resolution bit
planes, the bit-plane DMA will steal
some memory cycles from the 68000.
Both the Copper and the Blitter have
higher priority than the 68000 and
will get the cycles they need first. If
the Blitter senses a memory-bus re-
quest by the 68000, it will halt within
a few cycles to let the 68000 use the
bus; then it will again take over the
bus and continue. This gives the
68000 some cycles even when the
Blitter is running. If you set an inter-
nal "Blitter priority” bit, however, the
Blitter steals all the cycles it needs
from the 68000. Even this is not as
bad as it sounds; whenever any of the
above items steals cycles, it still per-
forms its function faster and more ef-
ficiently than the 68000 could have.

MULTITASKING
The Amiga is multitasking—that is, it
can work on more than one thing at
a time. At a low level, for example, this
means that the Amiga can move
sprites, read from the disk, and play
music at the same time. At higher
levels, several programs can run si-
multaneously in overlapping windows.
The Amiga's multitasking ability
comes from several features we've
already discussed: the interrupt struc-
ture and the Exec multitasking rou-
tines in ROM. Interrupts, which are
(continued)

AUGUST 1985/ = IBIYFINE: " #817

THE AMIGA

routed through and prioritized by the
peripheralsf/sound chip, initiate task
switching. For example, when a pe-
ripheral signals its need to do 1/O, the
interrupt goes through the periph-
erals/sound chip and causes the pe-
ripheral’s interrupt routine to execute
(assuming that no interrupt of higher
priority is running). The interrupt
routine either handles the peripheral’s
need immediately or notifies a task to
do so, then the routine ends. In both
cases, the Amiga then calls the task
rescheduler, which ensures that the

appropriate task has the chance to
use the system.

THE COPPER

The Copper is a coprocessor inside
the animation chip that runs its own
program. The execution of this pro-
gram is tied to the progress of the
electron beam as it draws the video
display. Because of this capability, the
Copper is most often used to control
the graphics and sound parts of the
custom chips, thus relieving the 68000
of the same task. The Copper reads

ADDRESS
(HEXADECIMAL)

000000

<«—— 256K OF CHIP RAM

040000

(RAM FOR STANDARD MACHINE)

080000

1.5 MEGABYTES-
RESERVED

256K OF CHIP RAM
(OPTIONAL PLUG-IN MEMORY)

200000

8 MEGABYTES RESERVED

FOR FUTURE USE AS PROCESSOR
RAM AND PERIPHERALS
(LOCATED IN EXPANSION BOX)

\/\/\/

<—— 12K RESERVED AS ADDRESS SPACE

FOR TWO 8520 SERIAL 1/0 CHIPS
(ADDRESSED AT BFDOFF AND
BFEOFE HEXADECIMAL)

<—— CUSTOM CHIPS ARE ADDRESSED

IN THIS 4K SPACE

192K, OF SYSTEM ROM

!\—_/\w
A00000
1.988 MEGABYTES-
RESERVED
BFDO00
00000
0.996 MEGABYTE-
RESERVED
DFF000
E00000
512K-RESERVED
EBO00O ["575K CONTROL AREA FOR
CONFIGURATION OF EXPANSION AREA
F00000
832K-RESERVED
FD0000

<——FFFFFF IS FINAL ADDRESS-
TOTAL WORKSPACE IS 16 MEGABYTES

Figure 2: The Amiga memory map.

88 BYTE « AUGUST 1985

its instructions from memory and uses
DMA to write from its program (in
memory) to the registers in itself and
the other two custom chips. (Accord-
ing to Jay Miner, this is not so strange
if you look at the three chips as “one
big custom chip.’)

The Copper's instruction set has
only three instruction types: move im-
mediate data to a register, wait until
the electron beam passes a given
position, and skip past the next in-
struction if the electron beam is past
a given location. The beam-position
values are accurate to the exact line
vertically and to 4 low-resolution
pixels (or 8 high-resolution pixels)
horizontally.

The Copper's versatility can be ex-
tended by clever use of its registers.
For example, you can get the Copper
to jump to a given instruction by caus-
ing the new address to be placed in
the Copper's internal “program
counter” By setting bit 15 of the IN-
TREQ (interrupt request) register, the
Copper can cause a level-6 interrupt,
which should lead to a more complex
68000 routine that will service the
situation that caused the interrupt.

One important aspect of the Cop-
per is that, while it is waiting for the
electron beam, it is off the system bus
and does not tie up any resources.
This is in contrast to many systems
that tie up their processors while
waiting for a given beam position.
Because of the Copper, the 68000 is
never tied up for several milliseconds
waiting for a display-related event.

The Copper can handle many basic
system functions without the interven-
tion of the 68000. For example, it can
refresh certain bit-plane and sprite
values that must be restored at the
beginning of each frame. It can also
change the color palette in mid-
screen (giving you more than 32
colors on the screen), change the
graphics mode (saving memory), and
update the display memory without
glitches by changing an image after the
electron beam has drawn it for the
current frame.

The Copper programs give the max-
imum amount of control over the
video display and events of that

THE AMIGA

periodicity, but most programmers
will not create them directly. Many of
the ROM routines that accomplish
high-level tasks manipulate Copper
programs to get their work done.

MEMORY SPACE
The first 512K bytes of memory is
called the chip memory (see figure 2 for
a memory map). Any function per-
formed by the custom chips—bit-
plane and sprite images, Copper pro-
grams, and other data (covered
below)—must be in this memory area.
Of course, in the standard 2 56K-byte
Amiga (or the expanded 512K-byte
version), the chip memory is also
used for everything else a computer
needs RAM for. Commodore/Amiga
may announce an expansion box at
a later date that can accommodate
various peripheral cards and up to 8
continuous megabytes of memory.
Normal programs and data should be
placed there, leaving the display
memory free for its specialized uses.

GRAPHICS

The Amiga’s graphics are, in a word,
breathtaking—in both their quality
and their speed. The machine's major
graphic components are the playfield,
the sprites, the Blitter, and the anima-
tion and text routines.

THE PLAYFIELD
A bit map is an area of memory that
the computer interprets as a rec-
tangular array of pixels (dots); most
computers have some bit-mapped
graphics capability. Many machines
form different colored pixels by
grouping two or more adjacent bits in
the bit map. The Amiga, however,
uses only one bit per pixel in its bit
map (this is called a bit plane) and
“stacks” separate bit planes together
to get different colors (see figure 3).
(The colors available are not “hard-
wired" into the machine but are speci-
fied in a color-register table, also known
as a color palette.) An image created by
multiple bit planes is called a raster.
The playfield is the bit-mapped graph-
ics display that comprises most of the
Amiga's video display.

The Amiga can stack up to five bit

FIVE BIT PLANES

INDEX FOR
COLOR OF
PIXEL

VIDEO DISPLAY

BRIGHT PINK
IXEL

000 TRANSPARENT | |
3D2 MEDIUM GREEN | |
LIGHT GREEN | /

0

1

R 2 | 706 5
~+3 [D88 [BRIGHT PINK |

1E | AAA LIGHT GRAY
1F | 333 DARK GRAY
INDEX VALUE ~ MEANING

(HEXADECIMAL)
COLOR REGISTER TABLE

Figure 3: Amiga playfield graphics. The bits from a given position in each bit plane
combine to create an index into the color-register table. The selected entry in the color-

register table determines the color of the pixel.

planes to get a maximum of 32 colors.
The color-register table contains
12-bit values that can specify any of
4096 different colors. Therefore, the
Amiga can draw images that use any
32 of these 4096 colors.

The Amiga has five bit-mapped res-
olutions. Four of them come from two
horizontal resolutions (320 pixels per
line, low resolution, and 640 pixels
per line, high resolution) times two
vertical resolutions (200 visible lines
per screen, noninterlaced frame, dis-
played every 1/60 second, and 400
visible lines per screen, interlaced
frame, displayed in two passes every
1/30 second). These can take any-
where from a minimum of 4000 bytes
(for a 320- by 200-pixel image) to
32,000 bytes (for a 640- by 400-pixel
image). Photo 3 shows an example of
the 320 by 200 mode.

The fifth mode, called hold-and-modify,
uses six bit planes in a way that can
simultaneously display all 4096 colors
on screen. In this mode, the top 2 bits
of a pixel control the interpretation of
the bottom 4 bits, which may repre-

sent either a color-register table value
for that pixel or a modification to one
component of the previous pixel's
color. Using hold-and-modify, you can
display all 4096 colors on an analog
RGB (red-green-blue) color monitor.
A playfield image can be much
larger, both horizontally and vertical-
ly, than the screen area used to dis-
play it. By manipulating several
register values, you can scroll an
image horizontally, vertically, or both,
with very little effort. (When the total
image is wider than its displayed part,
the last pixel on one line and the first
pixel on the next are not adjacent and
are separated by a fixed number of
bytes. The Amiga makes use of modulo
registers to make the manipulation of
two such bytes as fast and as simple

as if they were contiguous.)
Another display option is called the
dual-playfield mode. When you use this
mode, up to six bit planes are divided
into two separate images of up to
three bit planes each, with one image
having priority over the other. This
(continued)

AUGUST 1985 « BYTE 89

THE AMIGA

often simplifies complex graphic dis-
plays. For example, to simulate the ef-
fect of looking at a landscape through
binoculars, you can scroll a wide land-
scape playfield “"underneath” a sta-
tionary playfield that is all black ex-

cept for a transparent area that lets
the lower playfield show through.

SPRITES
A sprite is a small bit-mapped image
that can be repositioned simply by re-

Photo 3: Robocity, an example of Amiga graphics in the 320- by 200-pixel

32-color mode.

Photo 4: The Workbench display. This is an example of the 640 by 200 mode.

90 BYTE < AUGUST 1985

defining the horizontal and vertical
values for its upper left corner; sprites
are independent of the playfield and
appear to be over or under each
other and the playfield(s) according to
a specified priority.

The Amiga has eight hardware
sprites, each of which can have three
colors (sprites are two bit planes
deep, and each 2-bit pixel translates
to three colors plus transparency).
Amiga sprites are 16 low-resolution
pixels wide by any height. Each pair
of sprites shares a different three-
color color-register table (for example,
sprites 0 and 1 share color registers
17, 18, and 19, sprites 2 and 3 share
21, 22, and 23), allowing the eight
sprites to use up to 12 colors. Adja-
cent sprites (0 and 1, for example) can
be attached, meaning that their four bit
planes are combined; an attached
sprite pair can then use color registers
17 through 31 to display up to 15
colors.

As happens often in the Amiga,
complexity underlies apparent simpli-
city. A sprite is actually a 16-bit value
with a specified horizontal displace-
ment for the current line of the video
display. In manual mode, you are
responsible for creating the sprite’s
image on a line-by-line basis (few peo-
ple will use this mode directly). In
automatic mode, however, you activate
the sprite’'s DMA circuitry, which looks
to a data structure that contains the
line-by-line position and shape of the
sprite and draws it automatically. In
addition, you can redefine the sprite
indefinitely while the electron beam
creates the video display. The sprite
DMA circuitry accepts a list of sprite
position and shape-definition words
and draws them as long as the bot-
tom line of one occurrence and the
top line of the next are separated by
at least one video line (note that this
is without intervention of the Copper).

THE BLITTER

The Blitter is an area of the animation

chip that controls a DMA channel de-

dicated to drawing lines and manipu-

lating rectangular areas of the play-

field. Its name comes from an earlier
(continued)

THE AMIGA

term, bit-blt, which means "bit-mapped
block transfer”” Miner calls it a Bimmer,
for “bit-mapped image manipulator,”’
because of its extended capabilities,
but "Blitter” is used exclusively in the
Amiga's documentation.

When manipulating blocks of an
image, the Blitter (when properly set
up) takes care of a number of “house-
keeping” tasks that, in other com-
puters, tie up a lot of the processor’s
time. These include: masking out the
bits just outside the image that belong
to the same memory word as the
desired bits; shifting the image several
bits horizontally to match the word
alignment of the destination; and fill-
ing an area bounded on the left and
right by two nonhorizontal single-pixel
lines (this is the basis of its area-fill
capability).

The Blitter distinguishes itself from
other bit-blt devices by its ability to
combine up to three source areas in
one of 256 ways to become the des-
tination area. (If we call the sources
A, B, and C and their inverses A, B,
and C, these combine in eight
ways: ABC, ABC, ABC . ABC.
There are 256 possible combinations
of these eight terms,)

When being used to draw lines, the
Blitter can draw lines as 1s, Os, or a
specified pattern; it can also draw
single-bit-wide lines, which are
needed to bound an area to be filled.

In both its line-drawing and area-
manipulating operations, the Blitter
must have a moderate amount of
“housekeeping” calculations done
first. Given the speed and simplicity
of the resulting operation, the setup
calculations are not an unreasonable
overhead; however, you can deal with
the Blitter on a higher level using
some graphics routines in ROM.

ANIMATION ROUTINES

The animation routines that are part
of the Amiga's ROM form the basis for
the most sophisticated color anima-
tion the personal computer market
has ever seen. One of the demonstra-
tions we saw, Robocity, showed five
cartoon characters roaming across the
screen. The resolution was very
good—only when you looked closely

92 BYTE *« AUGUST 1985

The basic

element in the
animation subroutine
is the GEL,
a graphics
element.

could you see the “jaggies’ that
proved you weren't looking at a hand-
drawn cartoon.

Animation is accomplished through
a few subroutine calls that draw a
linked list of things needing to be
animated. The basic element in the
animation subsystem is the GEL, or
graphics element. There are four
types of GELs: VSprites, BOBs, Anim-
Comps, and AnimObjs.

VSprite stands for “virtual sprite” A
VSprite is a data structure in memory,
closely tied to a hardware sprite, that
is managed by the animation routines.
By letting the routines manage the
mapping of VSprites to hardware
sprites, you can (with some limita-
tions) define more than eight VSprites
and let the routines keep track of the
details automatically. VSprites can
also be clipped to display themselves
only within a certain horizontal slice
of the display.

BOB stands for "Blitter object.” A
BOB is an image that acts like a sprite,
but the animation routines use the
Blitter to “paste” the image onto the
playfield and (optionally) restore the
image that was ‘“underneath” the
BOB. A BOB is defined by the com-
bination of a BOB data structure and
a VSprite data structure, both of
which point to each other. One advan-
tage of a BOB over a VSprite is that
a BOB is drawn into a playfield—this
means it can be of any width and it
can have as many colors as the play-
field (up to 32). BOBs can also be
clipped to appear only in a certain
rectangular window.

An AnimComp is an animation com-
ponent, one part of an AnimOBbj, an
animation object. If your AnimObj is
a figure of a man walking, its Anim-

Comps will probably include BOBs for
a torso, a head, two arms, and two
legs. Each AnimComp includes
several views of the same object (e.g.,
arm bent, arm straight) with an asso-
ciated time that must elapse before
progressing from ohe view to the
next. Once all this is assembled,
repeated calls to the Animate routine
substitute new views (as determined
by their timer constants) into the
linked list of GELs before drawing the
items in the list.

You can do sequenced drawing animation
by specifying a series of views that
describe a repeated motion and by
specifying an offset to add to the ob-
ject's position each time the routines
cycle from the last view to the first. For
example, take the example of a cat
walking two steps to the right in six
views so that view 1 appears natural
when it is shown after view 6. By
specifying the correct horizontal off-
set to the right (which gets added
every time the image cycles back to
view 1), the Animate routine will auto-
matically draw the six views in the cor-
rect order and position to make the
cat appear to walk across the entire
width of the screen.

Alternatively, you can have the
Animate routine do motion-control anima-
tion, in which the next position of a
BOB is automatically calculated from
its current position and four x- and y-
axis velocity and acceleration values.
(You can also do this with a “ring” of
BOB views that cycle as in sequenced
drawing animation)

Another routine, DoCollision, detects
two types of collisions, GEL-to-GEL
collisions and boundary collisions
(collisions of GELs with rectangular
boundary windows); the routine then
executes a given collision-handling
routine from a table of 16 possible
routines. GELs can be coded so that
only certain types of collisions
register (useful in a game, for exam-
ple, to detect missile-target collisions
but not missile-missile collisions).

TEXT

The Amiga treats text as a special

kind of graphics. Fonts are described
(continued)

THE AMIGA

by a Text Font (TF) data structure that
allows the creation of either mono-
spaced or proportional characters of
any height. To save room with larger
fonts, a font may define anywhere be-
tween | and 255 characters. Two
fonts. Topaz 8 and Topaz 9. are in the
Amiga ROM. The first gives 40 char-
acters per line in normal resolution,
80 in high resolution; the second
gives 30 and 60 characters per line,
respectively. Additional fonts may be
loaded into and removed from RAM
as needed.

The Amiga uses the ROM routine
TxWrite to draw a given message to
a given location. The text can be
drawn in one of two user-definable
“pen” colors and in one of three draw-
ing modes: JAMI, an overstrike mode;
JAM2, a mode that draws both the
character in one color and the “white
space” behind it in another; and Com-
plement, which inverts every pixel
that corresponds to a pixel of the
character being drawn.

As in the Apple Macintosh, fonts
may be modified by combining any of
several styles: underline, italic,
boldface, and extended. However,
unlike the Macintosh, the Amiga text-
drawing routine looks for a separate-
ly defined font that contains the
needed style(s). If this fails, a future
revision of the text-drawing routine
may try to modify the existing "nor-
mal” version of the font (this is the
only way of achieving font styles in
the Macintosh).

AUDIO HARDWARE

The Amiga includes four hardware
channels of sound that are largely
controlled by DMA circuitry, indepen-
dent of the 68000. Audio-controlling
routines in part of the Amiga's ROM
extend these capabilities, allowing
you to work with the Amiga’s sound
capabilities at a higher conceptual
level and to manipulate the sound
channels “on the fly” without “glitch-
ing” the output.

The four channels of sound, num-
bered 0 through 3, are converted to
analog signals, filtered through a low-
pass filter, and mixed into two
separate output signals, one combin-

94 BYTE « AUGUST 1985

E)nts may be

modified by any
combination of
several styles:
underline, italic,
boldface, and extended.

ing channels 0 and 3, the other, chan-
nels 1 and 2. The filter begins to at-
tenuate frequencies between 5.5 kHz
and 7.5 kHz and effectively eliminates
any higher frequencies. This elimi-
nates much aliasing, which is distortion
that occurs when a signal that was
sampled too infrequently is played
back.

The sound channels can be con-
trolled directly by the 68000, which
gives you complete control over the
sound but keeps the 68000 from do-
ing other work. In most cases, you can
get the sound you need by letting the
DMA channels produce the sound
from a table of values (called a sound
table) that describe one or more cycles
of the needed waveform.

In the Amiga, each audio DMA
channel includes registers that give
the channel's loudness, point to a
16-bit-wide table of sound-table bytes
(the values are fetched a word at a
time and must be stored on even byte
boundaries), and establish the time
that must elapse before the next
sound byte is sent out. This last is a
period register, which contains a value
that is decremented every 279 ns; the
next value from the sound table is
sent out when the counter reaches
zero, and the register is reset to its
original value. When the pointer to
the sound table reaches its last value,
the pointer is reset to the start of the
table. In this way, the audio channel
continues to produce the given wave-
form without supervision until it is ex-
plicitly turned off.

Sound channels 0 through 2 can be
attached to the channels directly above
them to modulate the output of the
higher channel. When a channel is at-
tached, the 16-bit words that make up

its sound table are not interpreted as
two 8-bit sound values. Instead, the
data words are interpreted as volume
or period values for the current value
in the channel being modulated (i.e.,
the volume value will determine the
current loudness of the channel, and
the period value determines how
much time passes before the channel
sends out the next value in its sound
table). You can manipulate these
values to cause either amplitude
modulation, frequency modulation, or
both.

AUDIO SOFTWARE

The ROM contains three kinds of rou-
tines. The first, channel-allocation rou-
tines, allow you to allocate, use, and
discard a channel without keeping
track of which channel it is. If you have
more than four “virtual” channels
open, the four with the highest priori-
ties are mapped to actual hardware
audio channels.

Second, the DMA-control routines
control the way the audio DMA chan-
nel manipulates the hardware audio
channel via the various registers and
the sound table. In addition, you can
cause the channel to send a user-
specified signal bit to an existing task
(which may then trigger some event)
when the sound channel has played
a given number of repetitions of the
sound table; this allows tasks to
manipulate the Amiga based on the
sound channel’s activity.

Third, the envelope-generator rou-
tines automate the task of varying the
amplitude envelope that determines
how slow or fast a note changes
volume when it is played. To use these
routines, you must create a table of
four slope/destination values that
describe an ADSR (attack, decay, sus-
tain, release) envelope. (The ADSR
envelope tells you how fast the note
gains volume as soon as it starts, what
its maximum value is, how fast it
decays once it reaches that value, on
what level it remains as long as the
note is sustained, and how fast it
returns to zero once the note is re-
leased. You can draw such an en-
velope with four line segments; the

(continued)

Amiga defines the ADSR envelope by
giving the slope and destination y-axis
values for each line segment.) As with
the audio DMA, the software involved
can be told to send a signal bit to a
given task when the envelope is
completed.

One potentially significant piece of
code is a library of text-to-speech rou-
tines that is included with the stan-
dard Amiga computer. These are tran-
sient routines that are loaded from
disk to memory when needed; they
are capable of "speaking” normal
English text in a variety of pitches and
rates via one of the sound channels.
We heard the routines and found their
output to be heavily inflected but
understandable even with our eyes
closed (a test that many text-to-
speech algorithms fail).

INTUITION

Intuition, the user interface of the
Amiga, sits on top of the disk operat-
ing system and provides the icon-
oriented, mouse-based, desktop-
metaphor interface popularized by
the Apple Macintosh. Intuition com-
plements the architectural philosophy
and the graphics capabilities of the
computer by managing a complex
windowing system and providing ac-
cess to multitasking capabilities.

Intuition allows programs to ex-
ecute, each in its own window, simul-
taneously. Each program opens a vir-
tual terminal that has access to all the
system resources. Even though multi-
ple programs can execute simulta-
neously, only one can accept input
and display its menu bar. You can
select which program does this by
clicking on its window; this window
will also display special command
messages from the system. Different
programs can share the video display,
or a single program can create several
virtual terminals.

To support the simultaneous display
of different resolutions and graphics
modes, Intuition uses screens, which
are rectangular areas that occupy the
full width of the video diplay. Screens
have predefined resolutions, color
palettes, and height and contain one
or more windows. A bar at the top of

96 BYTE * AUGUST 1985

THE AMIGA

e

each screen identifies the screen.

All screens have pull-down menus.
Pressing the right mouse button,
which generally summons a menu,
transforms the screen bar into a menu
bar (a strip containing the names of
the menus that apply to the current-
ly active window). The screen bar also
contains two boxes that, when clicked
with the left mouse button (generally
responsible for selecting things),
move the screen to the top or bottom
of the stack of screens. You can select
menu items in the conventional way,
although there are several riew fea-
tures. Pull-down menus, for example,
can have up to two levels (see photo
4). Menus can contain options that,
when selected, persist until other,
mutually exclusive choices are made.
Programs may allow you to use com-
mand-key/letter combinations to
select commonly used menu items.

Programmers have considerable
flexibility in designing the menus. For
example, menus can appear in multi-
column format and contain graphics.
Menu items can, when selected, be
marked with checks, and they can
automatically display command-key/
letter alternatives.

Windows, which appear within
screens, can support all of the
Amiga’s graphics, text, and animation
features. Since Intuition opens ap-
plication programs in windows, ap-
plications must specify their graphics,
text, and color requirements by
selecting or creating an appropriate
screen. Intuition will supporf as many
screens and windows as can fit in
memory, but only one window and,
by extension, one screen can receive
input at a time. As a virtual terminal,
programs need not know if they are
active; they can continue to process
data as long as they don't need any
external input.

You can activate a window either by
moving the on-screen pointer inside
it and clicking the mouse button or by
moving an icon into it. Closing a win-
dow causes the last activated window
to be reactivated. Windows can in-
clude any of several features, includ-
ing vertical and horizontal scroll bars,
title bars, window-dragging areas

(used to drag the window to a new
position), depth arrangers (which
move the window to the top or bot-
tom of a stack of windows), sizing
boxes (which allow you to change the
window's size), and close boxes
(which close a window).

Intuition supports backdrop windows,
which open behind all other windows
and cannot be moved, sized, or
depth-arranged. The application pro-
gram is entirely responsible for main-
taining its contents, and normal win-
dows appear on top of it. A graphics
program, for example, may use a
backdrop window as the primary
drawing area and call a normal win-
dow to show you a palette of colors
from which to choose.

Programmers can specify whether
an application will refresh its window
when partially covered and un-
covered, or whether memory must be
allocated to save the concealed por-
tions of the window. A third choice,
super bit map, reserves enough memory
to store an image larger than the win-
dowing system will display. Intuition
automatically adjusts and displays as
much of the super bit map as it can.
Programmers can use this technique
to create windows whose contents
scroll. They can also determine where
windows will appear, what color to
use when drawing the border and
text, whether the window will have a
border, and whether to include a win-
dow title.

REQUESTERS, ALERTS, AND
GADGETS
Requesters are pop-up information
boxes that wait for either keyboard or
mouse input from you. Normally, you
will have to click the left mouse but-
ton over an “"OK" area before con-
tinuing, although you may be able to
switch to a different window (the re-
quester will still be there when you
return to the first window). With a
single call, programmers can attach
requesters to a window or to the dou-
ble click of the mouse button.
Programmers have access to pre-
defined system requesters, like the
"Please Insert Disk XXXX" requester.
(continued)

Inquiry 227

1BM and PGjr are trademark
BUS is a trademark of Infel, DE
trademarks of Digital Equipmen

98 BYTE = AUGUST 1985

THE AMIGA

To use a custom requester, however,
the programmer must specify things
like gadgets (discussed below),
borders, requester text, and, if
desired, hand-designed bit-mapped
images.

Alerts are special screens that carry
absolutely crucial information. They
differ from requesters in that no
screen or window can obscure them,
and users must act immediately on
the information before proceeding.
Recovery alerts require immediate
responses; dead-end alerts tell users that
the system has crashed.

Screens, windows, requesters, and
alerts all use gadgets, which are input
devices that attach to windows, re-
questers, and alerts. System gadgets in-
clude window-sizing gadgets, window-/
screen-dragging areas, depth ar-
rangers, and close boxes.

Programmers can design their own
gadgets by specifying border shapes
and colors, describing the select box
of the gadget, providing gadget text,
supplying a memory buffer for the
gadget response, and defining how
the gadget will behave.

In addition to system gadgets, pro-
grammers can select among Boolean,
string, integer, and proportional
gadgets. Boolean gadgets are true/false
devices that return a value only when
selected. String gadgets return a string
from the keyboard. Integer gadgets
return integer values. Proportional
gadgets, which return a value propor-
tional to their positions on either the
horizontal or vertical axis (or both),
are similar to scroll bars on the Macin-
tosh. A programmer can customize
the appearance of the knob (the ele-
ment that slides along the axis of
movement) to something different
from the default rectangular shape.

THE WORKBENCH

Intuition includes Workbench, an
iconic, window-based command inter-
face. The Workbench area is a four-
color screen with 640- by 200-pixel
resolution. It is both a screen on which
disks will open and application pro-
grams will run and an application that
keeps track of Workbench objects and
displays information using Intuition

windows. The Workbench automati-
cally opens when you enter a disk
containing it. By opening the Work-
bench library, programmers can ac-
cess Workbench functions to create
and manipulate the Workbench and
Workbench obijects.

In the Workbench, users can open
and close disks, tools, projects,
drawers, the clipboard, and the trash
can. Opening a tool (Amiga’s term for
an application program) creates a win-
dow on the current screen. Tools
create projects—files associated with
the tool. (A document file, for exam-
ple, is the project of a word-process-
ing application.) Opening a tool auto-
matically opens a window that lists
the names of available projects. Open-
ing a project icon automatically opens
the tool associated with it.

Workbench also supports extended
selection, a method of selecting multi-
ple items that will be operated on in
the order they were selected. For ex-
ample, you can select a word pro-
cessor and three projects (docu-
ments); the word processor will then
work on the projects in the order in
which they were selected.

Drawers are Workbench icons that
contain tools, projects, and other
drawers; when opened, they display
their contents as icons in a window.
To add an item to the drawer, either
drag the item's icon into the window
of an opened drawer or drop it over
a closed drawer's icon. You can delete
an item by moving its icon over the
trash can, a special drawer in each
disk drawer that contains deleted
objects.

The clipboard is a special object that
lets you transfer data between tools
(programs). The clipboard stores the
last text, graphics, or data cut from a
project as a RAM-based file (disk-
based if the clipping is too large for
memory). By using the clipboard, you
can quickly transfer information be-
tween tools or projects.

Programmers can also design cus-
tom screens, in which they can specify
things like the screen size and posi-
tion, the number of colors available,
the screen titles, and the default font.

(continued)

THE AMIGA

The Workbench also contains a pro-
gram called Preferences that lets you
set things like the maximum time for
two clicks to be considered a double
click, the monitor type, the speed with
which keyboard keys repeat, the inter-
val before they begin to repeat, and
the presence of optional peripherals,
including printers, modems, and
touchpads.

The Preferences program can also
give you access to a command-line in-
terface (CLI), which allows you to get
work done via typed-in commands.
The CLI, which opens as a window
under Workbench, will not be heavily
documented in the standard manuals,
and you will normally not see the icon
associated with it. The CLI uses com-
mands that are similar to those of
Microsoft's MS-DOS. It can, for exam-
ple, examine directories, run pro-
grams, and redirect input and output;
in essence, it gives programmers ac-
cess to the operating system that is
“underneath” Workbench.

CAVEATS

This product preview is unusual in
that we looked at the Amiga in an
earlier state than we usually do for
other product previews. We feel
justified in doing this for two reasons:
First, the hardware was in its final state
(the custom chips were working on
the production-version motherboard,
although the PROM [programmable
read-only memory| chips did not con-
tain the final version of the ROM
code); second, the Amiga should be
announced by the time you read this,
and we feel that the technology used
here is noteworthy. BYTE will print a
formal review of the Amiga as soon
as we can get our hands on a finished
machine.

We wrote this product preview after
two days with the Amiga engineering
staff, much study of four volumes of
technical documentation and several
user manuals, and subsequent tele-
phone conversations. At the time we
saw the machine, neither the ROM
code nor the operating system had
been “frozen’ which limited the
amount of software we could see to
the Workbench user interface, several

100 BYTE « AUGUST 1985

Table 1: This is a list of the
announced hardware and software
for the Amiga.

Hardware
20-megabyte hard disk,
20-megabyte tape backup,
multifunction card,
2400-bps modem (Tecmar)
Laser disk,
Color digitizer,
Genlock peripheral—allows
computer's
display to overlay an external
video signal (Commodore)

Software
Pascal,

Linkage Editor,

Overlay Loader,

Macro Assembler (Metacomco)
Turbo Pascal (Borland International)
Logo (The LISP Company)
Propaint,

Business Graphics,

Graphicraft,

Animation (Island Graphics)
Enable/Write (The Software Group)
Textcraft (Arktronics)

Musicraft (Commodore)
Harmony and four-octave music
keyboard,

Pitchrider (Cherry Lane

Technologies)
C Compiler (Lattice)
General Ledger,
Accounts Receivable,
Accounts Payable (Chang
Laboratories)
7 Cities of Gold,

One on One,

Archon,

Adventure Construction Set,

Pinball Construction Set,

Skyfox,

Financial Cookbook,

Deluxe Music Construction Set,

Black Knight,

Video Construction Set,

Return to Atlantis (Electronic Arts)
Communications package

(Software 66)

Welcome Aboard,

Print Shop,

SynCalc,

Mindwheel (Broderbund)
Keyboard Cadet,

The Halley Project (Mindscape)
All Infocom Interactive fiction

products

demonstration programs, and an
early version of the Graphicraft draw-
ing program.

All the screen shots in this product
preview came from working (though
still unfinished) software, but most of
what we've written about the Amiga’s
software came from the documen-
tation or the engineers. According to
Commodore/Amiga, the BASIC that
will be bundled with the system will
have extended graphics and sound
capabilities driven by calls to the
ROM routines. Table 1 gives a list
of products for the Amiga that we
learned of from their respective
manufacturers.

CONCLUSIONS

We were impressed by the Amiga’s
detail and speed of the color graphics
and by the quality of its sound system.
The interlocking features of the
Amiga—its custom chips, multitasking
support, multiple DMA channels,
shared system bus, display-driven
coprocessor, system routines in ROM,
etc—point to a complexity of hard-
ware design that we have not seen
before in personal computers. (It's in-
teresting to note that the Macintosh's
complexity is in its software and that,
according to several third-party
developers who have used both com-
puters, the Macintosh is harder to pro-
gram.) The synergistic effect of these
features accounts for the speed, quali-
ty, and low cost of the Amiga.

We are also very excited about the
inclusion of the text-to-speech library
in the Amiga. This means that any
Amiga program can potentially create
voice output, something that has
never been common in personal com-
puters because it was never, until now,
a standard feature.

The hardware looks good—we have
seen it work—but we saw very little
software actually working (a painting
program, the Workbench “desktop.’
and a few demonstration programs).
However, we think this machine will
be a great success; if that happens,
the Amiga will probably have a great
effect on other personal computer
companies and the industry in
general. m

Inquiry 215 —

	BYTE_Vol_10-08_1985-08_The_Amiga_Page_089
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_090
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_091
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_092
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_093
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_094
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_095
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_096
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_098
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_100
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_102
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_104
	BYTE_Vol_10-08_1985-08_The_Amiga_Page_106

